BP SAA 170°C 12h +230°C 2h (LCER)
- Creep temperature = 215°C
 Linear fit of last eight data points
 R-squared = 0.99728

BP SAA 170°C 12h +230°C 2h (LCER)
- Creep temperature = 220°C
 Linear fit of last eight data points
 R-squared = 0.99998

BP SAA 170°C 12h +230°C 2h (LCER)
- Creep temperature = 225°C
 Linear fit of last eight data points
 R-squared = 0.99923

BP SAA 170°C 12h +230°C 2h (LCER)
- Creep temperature = 230°C
 Linear fit of last eight data points
 R-squared = 0.99984

BP SAA 170°C 12h +230°C 2h (LCER)
- Creep temperature = 235°C
 Linear fit of last eight data points
 R-squared = 0.99968

BP SAA 170°C 12h +230°C 2h (LCER)
- Creep temperature = 240°C
 Linear fit of last eight data points
 R-squared = 0.99981

BP SAA 170°C 12h +230°C 2h (LCER)
- Creep temperature = 245°C
 Linear fit of last eight data points
 R-squared = 0.99973

BP SAA 170°C 12h +230°C 2h (LCER)
- Creep temperature = 250°C
 Linear fit of last eight data points
 R-squared = 0.99936
Figure S1. Original creep curves of the LCER cured at 170 °C under different creep temperatures. Red lines represent a linear fitting applied on the last eight data point to determine creep strain rate.
Figure S2. Temperature dependence of storage modulus of the resins cured at different temperatures. LCERs exhibit increased storage modulus in both glassy and rubbery region, indicating a reinforcing effect.
Figure S3. Temperature dependence of loss modulus of the resins cured at different temperatures. The shape of these curves is similar to that in Fig. 6b because both of them represent the viscous part of the resin.
Figure S4. POM images after 2h of isothermal cure of BP with SAA at different temperatures. (a) 170°C; (b) 180°C; (c) 190°C; (d) 200°C. For the LCERs, the morphology of the LC phase depends on curing temperatures, which might be the reason for the difference in their creep behaviors.