WHITE MOLD OF JERUSALEM ARTICHOKE

By
Frank M. Dugan, Research Plant Pathologist, USDA-ARS Western Regional Plant Introduction Station, Washington State University, Carol A. Miles, Professor, Department of Horticulture and Landscape Architecture, WSU Mount Vernon Northwestern Washington Research and Extension Center
White Mold of Jerusalem Artichoke

This fact sheet provides information on white mold of Jerusalem artichoke for commercial growers and home gardeners. Jerusalem artichoke (sunchoke, *Helianthus tuberosus*) is a Native American food plant closely related to the common sunflower (*Helianthus annuus*). The edible tubers contain inulin, which converts to fructose with cooking, a sweetener preferable to sucrose for diabetics (Kays and Nottingham 2008; Yang et al. 2015). The tubers of Jerusalem artichoke are gaining popularity as an alternative to other carbohydrate foods and are therefore increasing in availability in retail grocery outlets. Essentials of cultivation are provided in Cosgrove et al. (2013) and, specifically for Washington state, in Miles et al. (2013).

Identification

White mold is a major disease of both Jerusalem artichoke and sunflower. Sometimes called Sclerotinia stem rot, it is caused by the fungus *Sclerotinia sclerotiorum*. Initial symptoms of white mold on Jerusalem artichoke typically appear in late summer and first appear as wilting tops. Eventually, tops form a curled and drooped “shepherd’s crook” as leaves darken and become dry (Fig. 1).

These wilting symptoms are accompanied by dense white mycelium (fungus threads) at the base of plants and on roots (Figs. 2 and 3). Observed on close inspection are dark sclerotia (compact survival structures usually about 1/16 to 1/8 inch in diameter, sometimes larger) with a whitish interior (Figs. 3 and 4). Wilting, white mycelium, and the sclerotia are, in combination, diagnostic for white mold. Sclerotia (Fig. 4), along with mycelium, may occur on tubers in the soil or in storage.

Life cycle

Microscopic ascospores are a key inoculum of white mold on Jerusalem artichoke. During cool, moist conditions, these spores are released from small (often less than a quarter-inch wide), cup-shaped, brown apothecia. These spores germinate under high humidity. Subsequent growth on a food base of senescent or dead plant material is required in order to infect the living host. These conditions are usually found in the shaded lower canopy of the plant.
Once infection occurs, profuse white mycelium is produced, and, eventually, sclerotia are formed. Sclerotia can later germinate to directly infect a host, or they may germinate to produce more apothecia (Heffer Link and Johnson 2007). Sclerotia can be transported on tools or other equipment, or by movement of the soil. Very tiny spores (microconidia) are sometimes produced, but they seem to play no role in infection and their function is yet unknown.

Management

Once white mold has become established in a field, it is very hard to manage because of the extensive host range of over 400 plant species (Farr and Rossman n.d.). Also, sclerotia can ordinarily survive anywhere from two to six years in the soil (Ben-Yephet et al. 1993; Cooley-Smith and Cooke 1971). Because Jerusalem artichoke has limited varietal resistance to white mold (Kays and Nottingham 2008), crop rotation is essential. Rotate fields or beds into resistant crops, primarily maize (corn) or other plants in the grass family, for a minimum of three years (Heffer Link and Johnson 2007).

Another option in management of white rot is biological control. Biological control tends to work best in conjunction with other strategies, such as canopy reduction (to diminish humidity), weed control (because broad-leaf weeds may be hosts for the pathogen), and removal of crop residue and “volunteer” Jerusalem artichokes (to minimize food base for the pathogen). For information on biological control of white mold on Helianthus spp. (product label includes Jerusalem artichoke), see the Pacific Northwest Plant Disease Management Handbook.

References

Reference to commercial product(s), commercial entities, or trade names does not imply endorsement by WSU or bias against those not mentioned. Growers should check with the Washington State Department of Agriculture or their certifying agency prior to use of any labeled product.

Cover image by Jan Samanek, Phytosanitary Administration, Bugwood.org.
Use pesticides with care. Apply them only to plants, animals, or sites as listed on the label. When mixing and applying pesticides, follow all label precautions to protect yourself and others around you. It is a violation of the law to disregard label directions. If pesticides are spilled on skin or clothing, remove clothing and wash skin thoroughly. Store pesticides in their original containers and keep them out of the reach of children, pets, and livestock.

Copyright 2016 Washington State University

WSU Extension bulletins contain material written and produced for public distribution. Alternate formats of our educational materials are available upon request for persons with disabilities. Please contact Washington State University Extension for more information.

Issued by Washington State University Extension and the U.S. Department of Agriculture in furtherance of the Acts of May 8 and June 30, 1914. Extension programs and policies are consistent with federal and state laws and regulations on nondiscrimination regarding race, sex, religion, age, color, creed, and national or ethnic origin; physical, mental, or sensory disability; marital status or sexual orientation; and status as a Vietnam-era or disabled veteran. Evidence of noncompliance may be reported through your local WSU Extension office. Trade names have been used to simplify information; no endorsement is intended. Published March 2016.