These are well-drained, medium-textured soils that developed from alluvium. This alluvium is mainly loess that washed from the adjacent upland. They occupy wide stream bottoms and are associated with the Walla Walla soils and are found at elevations of 1500 to 2000 feet. Hermiston soils are found in Adams, Columbia, Grant, Walla Walla and Whitman Counties.

Representative Description:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
<th>Water Holding Capacity</th>
<th>Permeability</th>
<th>Shrink-Swell Potential</th>
<th>Engineering Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9"</td>
<td>dark grayish-brown silt loam, granular, friable; pH 7.9-8.4</td>
<td>.20</td>
<td>0.63-2.0</td>
<td>low</td>
<td>ML A-4</td>
</tr>
<tr>
<td>9-23"</td>
<td>dark grayish brown silt loam, massive, friable, blocky; pH 7.9-8.4</td>
<td>.20</td>
<td>0.63-2.0</td>
<td>low</td>
<td>ML A-4</td>
</tr>
<tr>
<td>23-38"</td>
<td>dark grayish-brown silt loam, prismatic, friable, moderately calcareous; pH 8.5-9.0</td>
<td>.22</td>
<td>0.63-2.0</td>
<td>low</td>
<td>ML A-4</td>
</tr>
<tr>
<td>38-66"</td>
<td>pale brown silt loam, massive, firm, few lime veins; pH 7.9-8.4</td>
<td>.22</td>
<td>0.63-2.0</td>
<td>low</td>
<td>ML A-4</td>
</tr>
</tbody>
</table>

Caution: All Hermiston soils are not exactly like the one shown above. Differences in characteristics will affect suitability and limitations for uses. See Capability Classification table.

ABOUT THE SOIL GUIDE SHEETS: Soil Guide Sheets are written primarily to indicate suitability for irrigation farming. In addition, some engineering properties are shown. These will serve as a preliminary guide but on-site investigation will be needed before making final decisions on non-agricultural uses. Certain terms and soil ratings may not be self explanatory. Refer to "Guide to the Use of Soil Guide Sheets".
Determine the depth of your soil. Depth affects use and management. Total water holding capacity is less on shallower soil.

Suitability as a source of:
- Topsoil - Good
- Sand - Unsuitable
- Gravel - Unsuitable
- Road Fill - Poor to fair

Soil features affecting engineering uses:
- Highway location - High water table and overflow hazard, moderate susceptibility to frost action
- Dikes, Levees, Embankments - Susceptible to piping and cracking, close control essential for compaction
- Reservoir - Moderate permeability
- Septic disposal systems - Moderate permeability

Suitability for irrigation farming:
- Water holding capacity - High
- Infiltration - Slow to moderate
- Permeability - Moderate
- Drainage - Well drained
- Salinity and alkali hazard - Moderate, strongly alkaline in upper substratum and moderately alkaline throughout the profile.
- Erosion hazard - Slight

General Evaluation: Hermiston soils will be productive under irrigation with normal good management practices. Productivity and choice of crops on some Hermiston soils may be limited by cold climate. Suitable for rill or sprinkler irrigation. Adequate drainage must be maintained to prevent salinity. Suitable for grain, forage, and some row crops. Leveling may expose subsoils that are low in fertility. Have your soil tested to determine fertilizer needs.

1/Deep and very deep soils (40"+) with no inhibiting layers in the profile.

This Soil Guide Sheet was prepared by A. I. Dow, Extension Soils Specialist, Washington State University, in cooperation with Eveard T. Harrison, Soil Scientist, Robert F. Mitchel, State Soil Scientist, Soil Conservation Service, USDA; and Mel A. Hagood, Extension Irrigation and Water Use Specialist, Washington State University.