VALUE OF A ONE-TIME SWEEP APPLICATION IN MANAGING NO-TILL FALLOW

By Aaron Esser, WSU Lincoln-Adams Area Extension
Value of a One-Time Sweep Application in Managing No-Till Fallow

Abstract

Farmers across the intermediate rainfall (12–16 inches of annual precipitation) cropping region of eastern Washington traditionally use a tillage-based summer fallow-winter wheat (*Triticum aestivum* L.) system in their crop rotation. By adopting conservation tillage, farmers have increased implementation of no-till (i.e., chemical herbicide) summer fallow systems to reduce erosion and increase profitability. However, they have expressed concerns regarding adequate seed zone soil moisture for fall seeding of winter wheat and consistent control of tough weeds during the fallow period. The main objective with this research project was to examine the value of a one-time “sweep” cultivation to improve seed zone moisture and kill weeds that can be troublesome with a cost-effective herbicide application (traditionally multiple glyphosate applications) compared to a true no-till fallow (NTF) system. An on-farm trial (OFT) established over four years examined the impact of a single sweep cultivator operation in fallow on seed zone soil moisture, yield, and grain quality. Weed data were not collected, but visual observations were made. The treatments were NTF and a sweep operation (Sweep) replacing the second of three herbicide applications in the NTF system. The OFT was a randomized complete block design with four replications. The Sweep did not affect seed zone moisture, grain yield, or test weight. Grain protein was less following the sweep application but did not affect the market value of the crop. The sweep, as anticipated, was an adequate weed control operation. In conclusion, the Sweep did not increase seed zone moisture, but was effective in removing weeds that can be difficult to control with glyphosate.

Background

Farmers across the intermediate rainfall (12–16 inches of annual precipitation) cropping region of eastern Washington traditionally use a tillage-based summer fallow-winter wheat (*Triticum aestivum* L.) system in their crop rotation. Tillage-based summer fallow is the process of breaking capillary action and creating an insulating dust mulch on the soil surface to preserve seed zone moisture needed to consistently establish winter wheat early. Blowing dust (Figure 1) from excessively tilled fields leads to repeated soil losses and reduced air quality (Papendick 1998).

Despite its identified advantages, conservation tillage fallow is not widely used in eastern Washington (Janosky et al. 2002). Wheat farmers generally do not practice no-till (i.e., chemical herbicide) summer fallow because of increased evaporative loss of seed zone soil moisture during the dry summer months compared to tillage fallow (Zaikin et al. 2007). Our objective was to examine the value of a one-time “sweep” cultivation to improve seed zone moisture and kill weeds that can be troublesome (Figure 2) with multiple applications of primarily glyphosate herbicide application compared to a true NTF system. This practice is also designed to minimize or delay the development of weed biotypes resistant to herbicides, for example, glyphosate, which is currently the most widely used herbicide for fallow management.

Figure 1. Wind erosion may be created with excessive tillage in traditional summer fallow systems.

Figure 2. Prickly lettuce (*Lactuca serriola* L.) is one of the species of “hard to kill” weeds in a NTF systems that the cooperator is having difficulty controlling with glyphosate herbicide. This plant is showing glyphosate damage but will continue to grow and produce seed if not controlled.
Methods

An OFT 5 miles north of Almira, WA was carried out over four crop years to examine the impact of a single sweep cultivator operation in fallow on seed zone soil moisture, yield, and grain quality (Figure 3). Weed data were not collected but visual observations were made. All treatments were harrowed in early spring for residue management. The treatments were NTF and Sweep replacing the second of three glyphosate herbicide applications in the NTF system (Figure 4).

During the last two years of the OFT a third “early” sweep treatment was incorporated into the study to evaluate the timing of the sweep application (Table 1).

The sweep was 10 inches wide on a FlexiCoil cultivator frame with an 8-inch shank spacing. It was run shallow (2 inches) to sever weed stems from their roots and stop the capillary process in the soil to reduce evaporation of seed zone moisture (Figure 5a). Both treatments were seeded to winter wheat with a ConservaPak direct seed drill (Figure 5b). The plots were harvested with the cooperator’s combine (Figure 5c). Cultivars, seed rate, and fertility varied between years but remained constant between treatments. The OFT was a randomized complete block design with four replications each year.

Table 1. Timing of sweep application, seeding date, and harvest date of a series of large OFTs carried out over four years at an OFT north of Almira, WA.

<table>
<thead>
<tr>
<th>Year</th>
<th>Sweep Date</th>
<th>Seeding Date</th>
<th>Harvest Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>July 11, 2005</td>
<td>Sept. 10, 2005</td>
<td>Aug. 17, 2006</td>
</tr>
<tr>
<td>4</td>
<td>July 1, 2008 (early)</td>
<td>Sept. 13, 2008</td>
<td>Aug. 21, 2009</td>
</tr>
</tbody>
</table>

Figure 3. A 10-inch sweep on an 8-inch shank spacing was run two inches deep to sever weeds not fully controlled by glyphosate application.

Figure 4. The OFT was a randomized complete block design with four replications each of the four years. Plot size was 43 feet wide and at least 600 feet long each year. The study site was harrowed each spring to help with residue management.

Figure 5. The cooperator establishing the sweep treatments (a), seeding the OFT with a ConservaPak no-till drill (b), and harvesting the plots (c).
Results

No differences in seed zone soil moisture (data not presented), yield, test weight, or protein were detected between the “early” sweep treatment and the traditional sweep treatment over the last two years (Table 2).

Table 2. Average grain yield, test weight, and protein from an OFT examining an “early” sweep vs. the traditional sweep operation during the fallow period north of Almira, WA between 2008–2009.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Yield (bu/ac)</th>
<th>Test Weight (lb/bu)</th>
<th>Grain Protein (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Early” Sweep</td>
<td>77.3</td>
<td>59.3</td>
<td>9.9</td>
</tr>
<tr>
<td>Sweep</td>
<td>77.4</td>
<td>59.2</td>
<td>9.9</td>
</tr>
<tr>
<td>Level of Significance</td>
<td>n.s.¹</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

¹n.s. is no significant difference between treatments.

Gravimetric seed zone soil moisture was collected in 2005 through 2008; however, results in 2006 and 2007 were compromised and not included in analysis. Samples were taken in 4-inch increments down to a depth of 12 inches. Overall seed zone soil moisture was not significantly different between fallow treatments and averaged 1.42 in/ft (Figure 6).

Although grain yields were different between years, there were no differences between treatments within any year. Averaged across all years, grain yield was 81 bu/ac (Figure 7). Grain test weight averaged 58.9 lb/bu and was not different between fallow treatments (Table 3). Grain protein with the NTF treatment averaged 9.8% and was significantly greater than the sweep treatment which averaged 9.4%; however, both treatments were within market acceptance. No weeds were observed in the Sweep treatment, and in each of the 4 years, no further tillage or herbicide was applied prior to seeding. In the NTF treatment, small severely injured weeds could be observed and subsequent herbicide application may have been applied prior to seeding.

Table 3. Average grain test weight and protein from an OFT examining winter wheat produced under NTF and Sweep during the fallow period north of Almira, WA between 2006–2009.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Test Weight (lb/bu)</th>
<th>Grain Protein (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTF</td>
<td>58.9</td>
<td>9.8</td>
</tr>
<tr>
<td>Sweep</td>
<td>59.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Level of Significance</td>
<td>n.s.¹</td>
<td>0.05</td>
</tr>
</tbody>
</table>

¹n.s. is no significant difference between treatments.

Figure 6. Seed zone soil moisture between NTF and Sweep prior to seeding in a series of OFT north of Almira, WA. Data is an average of 2005 and 2008 only as 2006 and 2007 data were compromised.

Figure 7. Average grain yield from an OFT examining winter wheat produced under NTF and Sweep during the fallow period north of Almira, WA between 2006-2009.

Figure 8. In conclusion, a single Sweep in fallow did not impact grain yield or test weight (a), but did remove difficult to control weeds (b).
Conclusions

The Sweep did not increase or decrease seed zone moisture or grain yield (Figure 8a) but was effective in removing weeds (Figure 8b) that can be difficult to control with multiple applications of primarily glyphosate herbicide application. It may be a valuable tool to help reduce the potential for herbicide-resistant weeds and maintain a conservation farming system.

Acknowledgements

The author would like to thank the following for financial support: Northwest Columbia Plateau PM10 Project and Lincoln-Adams Crop Improvement Association.

References


Use pesticides with care. Apply them only to plants, animals, or sites as listed on the label. When mixing and applying pesticides, follow all label precautions to protect yourself and others around you. It is a violation of the law to disregard label directions. If pesticides are spilled on skin or clothing, remove clothing and wash skin thoroughly. Store pesticides in their original containers and keep them out of the reach of children, pets, and livestock.

Copyright 2017 Washington State University

WSU Extension bulletins contain material written and produced for public distribution. Alternate formats of our educational materials are available upon request for persons with disabilities. Please contact Washington State University Extension for more information.

Issued by Washington State University Extension and the U.S. Department of Agriculture in furtherance of the Acts of May 8 and June 30, 1914. Extension programs and policies are consistent with federal and state laws and regulations on nondiscrimination regarding race, sex, religion, age, color, creed, and national or ethnic origin; physical, mental, or sensory disability; marital status or sexual orientation; and status as a Vietnam-era or disabled veteran. Evidence of noncompliance may be reported through your local WSU Extension office. Trade names have been used to simplify information; no endorsement is intended. Published April 2017.